Adaptive Smolyak Pseudospectral Approximations

نویسندگان

  • Patrick R. Conrad
  • Youssef M. Marzouk
چکیده

Polynomial approximations of computationally intensive models are central to uncertainty quantification. This paper describes an adaptive method for nonintrusive pseudospectral approximation, based on Smolyak’s algorithm with generalized sparse grids. We rigorously analyze and extend the nonadaptive method proposed in [P. G. Constantine, M. S. Eldred, and E. T. Phipps, Comput. Methods Appl. Mech. Engrg., 229–232 (2012), pp. 1–12], and compare it to a common alternative approach for using sparse grids to construct polynomial approximations, direct quadrature. Analysis of direct quadrature shows that O(1) errors are an intrinsic property of some configurations of the method, as a consequence of internal aliasing. We provide precise conditions, based on the chosen polynomial basis and quadrature rules, under which this aliasing error occurs. We then establish theoretical results on the accuracy of Smolyak pseudospectral approximation, and show that the Smolyak approximation avoids internal aliasing and makes far more effective use of sparse function evaluations. These results are applicable to broad choices of quadrature rule and generalized sparse grids. Exploiting this flexibility, we introduce a greedy heuristic for adaptive refinement of the pseudospectral approximation. We numerically demonstrate convergence of the algorithm on the Genz test functions, and illustrate the accuracy and efficiency of the adaptive approach on a realistic chemical kinetics problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smolyak method for solving dynamic economic models_ Lagrange interpolation, anisotropic grid and adaptive domain

We show how to enhance the performance of a Smolyak method for solving dynamic economic models. First, we propose a more efficient implementation of the Smolyak method for interpolation, namely, we show how to avoid costly evaluations of repeated basis functions in the conventional Smolyak formula. Second, we extend the Smolyak method to include anisotropic constructions that allow us to target...

متن کامل

Convergence Results for Pseudospectral Approximations of Hyperbolic Systems by a Penalty - Type Boundary Treatment

In a previous paper we have presented a new method of imposing boundary conditions in the pseudospectral Chebyshev approximation of a scalar hyperbolic equation. The novel idea of the new method is to collocate the equation at the boundary points as well as in the inner grid points, using the boundary conditions as penalty terms. In this paper we extend the above boundary treatment to the case ...

متن کامل

Convergence of a Gauss Pseudospectral Method for Optimal Control

A convergence theory is presented for approximations of continuous-time optimal control problems based on a Gauss pseudospectral discretization. Under assumptions of coercivity and smoothness, the Gauss pseudospectral method has a local minimizer that converges exponentially fast in the sup-norm to a local minimizer of the continuous-time optimal control problem. The convergence theorem is pres...

متن کامل

Accelerating Bayesian Inference in Computationally Expensive Computer Models Using Local and Global Approximations

Computational models of complex phenomena are an important resource for scientists and engineers. However, many state-of-the-art simulations of physical systems are computationally expensive to evaluate and are black box—meaning that they can be run, but their internal workings cannot be inspected or changed. Directly applying uncertainty quantification algorithms, such as those for forward unc...

متن کامل

Sparsifying Preconditioner for Pseudospectral Approximations of Indefinite Systems on Periodic Structures

This paper introduces the sparsifying preconditioner for the pseudospectral approximation of highly indefinite systems on periodic structures, which include the frequency-domain response problems of the Helmholtz equation and the Schrödinger equation as examples. This approach transforms the dense system of the pseudospectral discretization approximately into a sparse system via an equivalent i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2013